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1. Introduction

In the recent literature there has been a lot of excitement about the work of Bagger

and Lambert [1 – 3], and the closely related work of Gustavsson [4], who succeeded in

finding a 2+ 1 dimensional superconformal Chern-Simons theory with the maximal N = 8

supersymmetry and manifest SO(8) R-symmetry. These papers were inspired in part by

the ideas of [5, 6]. The original motivation was a search for a theory describing coincident

M2-branes. An interesting clue emerged in [7, 8] where it was shown that, for a specially

chosen level of the Chern-Simons gauge theory, its moduli space coincides with that of a

pair of M2-branes at the R8/Z2 singularity. The Z2 acts by reflection of all 8 coordinates

and therefore does not spoil the SO(8) symmetry. However, initial attempts to match the

moduli space of the Chern-Simons gauge theory for arbitrary quantized level k with that of

M2-branes led to a number of puzzles [7 – 9]. Very recently, these puzzles were resolved by

a very interesting modification of the Bagger-Lambert-Gustavsson (BLG) theory proposed

by Aharony, Bergman, Jafferis and Maldacena (ABJM) [10] which, in particular, allows

for a generalization to an arbitrary number of M2-branes. This opens the possibilities for

many extensions of this work, some of which we begin exploring in this paper.

The original BLG theory is a particular example of a Chern-Simons gauge theory with

gauge group SO(4), but the Chern-Simons term has a somewhat unconventional form.

However, van Raamsdonk [9] rewrote the BLG theory as an SU(2) × SU(2) gauge theory
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coupled to bifundamental matter, as summarized in section 2. He found conventional

Chern-Simons terms for each of the SU(2) gauge fields although with opposite signs, as

noted already in [11]. A more general class of gauge theories of this type was introduced by

Gaiotto and Witten [12] following [13]. In this formulation the opposite signs for the two

SU(N) Chern-Simons terms are related to the SU(N |N) supergroup structure. Although

the GW formulation generally has only N = 4 supersymmetry, it was recently shown how

to enlarge the supersymmetry by adding more hypermultiplets [14, 10]. In particular, the

maximally supersymmetric BLG theory emerges in the SU(2)×SU(2) case when the matter

consists of two bi-fundamental hypermultiplets. Furthermore, the brane constructions

presented in [12, 10] indicate that the relevant gauge theories are actually U(N) × U(N).

The presence of the extra interacting U(1) compared to the original BLG formulation is

crucial for the complete M-theory interpretation [10].

One of our aims is to present the BLG theory using N = 2 superspace formulation in

2+1 dimensions, which is quite similar to the familiar N = 1 superspace in 3+1 dimensions.

In such a formulation only the U(1)R symmetry is manifest, while the quartic superpotential

has an additional SU(4) global symmetry. For a specially chosen normalization of the

superpotential, the full scalar potential is manifestly SO(8) invariant. In section 3, where

we establish the superspace formulation of the BLG theory, we demonstrate how this

happens through a special cancellation involving the F and D terms.1

In section 4 we study its generalizations to U(N) × U(N) gauge theory found by

ABJM [10]. The quartic superpotential of this 2 + 1 dimensional theory has exactly the

same form as in the 3 + 1 dimensional theory on N D3-branes at the conifold singular-

ity [15]. For general N , its global symmetry is SU(2) × SU(2) but for N = 2 it becomes

enhanced to SU(4) [16] (in this case the theory becomes equivalent to the BLG theory

with an extra gauged U(1) [10]). For N > 2 ABJM showed that this theory possesses

N = 6 supersymmetry [10]. In the N = 2 superspace formulation, this means that, for a

specially chosen normalization of the superpotential, the global symmetry is enhanced to

SU(4)R. We demonstrate explicitly how this symmetry enhancement happens in terms of

the component fields, once again due to a special cancellation involving F and D terms.

In section 5 we consider a Zn orbifold of the ABJM theory that produces a (U(N) ×
U(N))n Chern-Simons gauge theory. This theory possesses SU(2) × SU(2) R-symmetry,

indicating that it has N = 4 supersymmetry. We propose that this theory describes N

M2-branes at a certain Zn × Zk̃ orbifold of C4, where k̃ is linearly related to the level k.

Thus, this theory is conjectured to be dual, in the sense of [17 – 19], to a certain Zn × Zk̃

orbifold of AdS4 ×S7. In section 6 we consider a different Zl orbifold of the ABJM theory

that produces a family of chiral (U(N)×U(N))l Chern-Simons gauge theories with N = 2

supersymmetry and SU(2) global symmetry. These theories are conjectured to be dual toZl×Zk̃ orbifolds of AdS4×S7 that preserve the same symmetries. In section 7 we deform the

quartic superpotential of the N = 8 theory by an SU(3) invariant mass term, creating RG

1This phenomenon is analogous to what happens when the N = 4 SYM theory in 3+1 dimensions is

written in terms of an N = 1 gauge theory coupled to three chiral superfields. While only the U(1)R×SU(3)

symmetry is manifest in such a formulation, the full SU(4) ∼ SO(6) symmetry is found in the potential as

a result of a specific cancellation between the F and D terms.
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flow to an N = 2 superconformal gauge theory with a sextic superpotential. We conjecture

that this new gauge theory is dual to the U(1)R × SU(3) invariant extremum [20] of the

N = 8 gauged supergravity. We also propose that the entire SU(3) invariant RG flow in

the Chern-Simons gauge theory is dual to the M-theory description found in [21 – 24].

2. Summary of BLG theory

Here we review the BLG theory in van Raamsdonk’s product gauge group formulation [9],

which rewrites it as a superconformal Chern-Simons theory with SU(2)2 gauge group and

bi-fundamental matter. It has a manifest global SO(8) R-symmetry which shows that it is

N = 8 supersymmetric.

We use the following notation. Indices transforming under the first SU(2) factor of the

gauge group are a, b, . . ., and for the second factor we use â, b̂, . . .. Fundamental indices are

written as superscript and anti-fundamental indices as subscript. Thus, the gauge and mat-

ter fields are Aa
b, Â

â
b̂, X

a
b̂, and Ψa

b̂. The conjugate fields have indices (X†)âb and (Ψ †)âb.

Most of the time, however, we will use matrix notation and suppress gauge indices. Lorentz

indices are µ = 0, 1, 2 and the metric on the world volume is gµν = diag(−1,+1,+1). SO(8)

vector indices are I, J, . . .. The fermions a represented by 32-component Majorana spinors

of SO(1, 10) subject to a chirality condition on the world-volume which leaves 16 real

degrees of freedom. The SO(1, 10) spinor indices are generally omitted.

The action is then given by [9]

S =

∫

d3x tr

[

− (DµXI)†DµX
I + iΨ̄ †Γ µDµΨ

− 2if

3
Ψ̄ †Γ IJ

(

XIXJ†Ψ +XJΨ †XI + ΨXI†XJ
)

− 8f2

3
trX [IX†JXK]X†[KXJX†I]

+
1

2f
ǫµνλ

(

Aµ∂νAλ +
2i

3
AµAνAλ

)

− 1

2f
ǫµνλ

(

Âµ∂νÂλ +
2i

3
ÂµÂνÂλ

)]

(2.1)

where the covariant derivative is

DµX = ∂µX + iAµX − iXÂµ . (2.2)

The Chern-Simons level k is contained in

f =
2π

k
. (2.3)

The bifundamental scalars XI are related to the original BLG variables xI
a with SO(4)

index a through

XI =
1

2
(xI

41+ ixI
i σ

i) , (2.4)

where σi are the Pauli matrices. It is important to note that the scalars satisfy the reality

condition

X∗ = −εXε , (2.5)
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where ε = iσ2. This condition can only be imposed for the gauge group SU(2)2, which

seems to present an obstacle for generalizing the theory to rank N > 2. Recently, this ob-

stacle was overcome by using complex bifundamental superfields [10]. This will be reviewed

in section 4.

Finally we note the form of the SU(2)2 gauge transformations

Aµ → UAµU
† − iU∂µU

† , X → UXÛ † , (2.6)

Âµ → Û ÂµÛ
† − iÛ∂µÛ

† , X† → ÛX†U † ,

where U, Û ∈ SU(2).

3. BLG theory in N = 2 superspace

In this section we will write the BLG theory (2.1) in N = 2 superspace. Of the SO(8)R
symmetry this formalism leaves only the subgroup U(1)R × SU(4) manifest. However, we

will demonstrate how the SO(8) R-symmetry is recovered when the action is expressed

in terms of component fields. Our notations and many useful superspace identities are

summarized in appendix A.

The gauge fields A and Â become components of two gauge vector superfields V and

V̂ . Their component expansions in Wess-Zumino gauge are

V = 2i θθ̄ σ(x) + 2 θγµθ̄ Aµ(x) +
√

2i θ2 θ̄χ̄(x) −
√

2i θ̄2 θχ(x) + θ2 θ̄2
D(x) (3.1)

and correspondingly for V̂. Here σ and D are auxiliary scalars, and χ and χ̄ are auxil-

iary fermions. The matter fields X and Ψ are accommodated in chiral superfields Z and

anti-chiral superfields Z̄ which transform in the fundamental and anti-fundamental repre-

sentation of SU(4), respectively. Their SU(4) indices ZA and Z̄A will often be suppressed.

The component expansions are

Z = Z(xL) +
√

2θζ(xL) + θ2 F (xL) , (3.2)

Z̄ = Z†(xR) −
√

2θ̄ζ†(xR) − θ̄2 F †(xR) . (3.3)

The scalars Z are complex combinations of the BLG scalars

ZA = XA + iXA+4 for A = 1, . . . , 4 . (3.4)

We define two operations which conjugate the SU(2) representations and the SU(4) repre-

sentation, respectively, as2

Z‡A := −ε(ZA)Tε = X†A + iX†A+4 , (3.5)

Z̄A := −ε(ZA)∗ε = XA − iXA+4 . (3.6)

2We should caution that the bar denoting the anti-chiral superfield Z̄ is just a label and does not

mean that the component fields are conjugated by (3.6). In fact, the components of Z̄ are the hermitian

conjugates, see (3.3).
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Separating these two operations in possible only for gauge group SU(2)2, since for gauge

groups of higher rank there is no reality condition analogous to (2.5). In these cases only the

combined action, which is the hermitian conjugate Z† = Z̄‡, makes sense. The possibility

to conjugate the SU(4) representation independently from the SU(2)2 representation allows

us to invert (3.4):

XA = 1
2

(

ZA + Z̄A

)

, XA+4 = 1
2i

(

ZA − Z̄A

)

. (3.7)

The superspace action S = SCS+Smat+Spot consists of a Chern-Simons part, a matter

part and a superpotential given by

SCS = −iK
∫

d3x d4θ

∫ 1

0
dt tr

[

VD̄α
(

etVDαe
−tV

)

− V̂D̄α
(

etV̂Dαe
−tV̂

)]

, (3.8)

Smat = −
∫

d3x d4θ tr Z̄Ae
−VZAeV̂ , (3.9)

Spot = L

∫

d3x d2θW(Z) + L

∫

d3x d2θ̄ W̄(Z̄) (3.10)

with

W =
1

4!
ǫABCD trZAZ‡BZCZ‡D , W̄ =

1

4!
ǫABCD tr Z̄AZ̄‡

BZ̄CZ̄‡
D . (3.11)

In terms of SO(4) variables, Za, which are related to the SU(2)2 fields according to (2.4),

it assumes the form

W = − 1

8 · 4! ǫABCDǫ
abcdZA

a ZB
b ZC

c ZD
d . (3.12)

This superpotential possesses only a U(1)R × SU(4) global symmetry as opposed to the

SO(8)R symmetry of the BLG theory. We will show in the following that when the nor-

malization constants K and L are related as K = 1
L , then the R-symmetry of the model is

enhanced to SO(8). If we furthermore set L = 4f , we recover precisely the action (2.1).

The gauge transformations are given by [25]

etV → eiΛetVe−iΛ̄ , etV̂ → eiΛ̂etV̂e−i ˆ̄Λ , Z → eiΛZe−iΛ̂ , Z̄ → ei
ˆ̄ΛZ̄e−iΛ̄ , (3.13)

where the parameters Λ, Λ̂ and Λ̄, ˆ̄Λ are chiral and anti-chiral superfields, respectively.

Their t dependence is determined by consistency of the transformation law for V and V̂.

In order to preserve the WZ gauge, these fields have to be simply

Λ = λ(xL) , Λ̄ = λ(xR) , Λ̂ = λ̂(xL) , ˆ̄Λ = λ̂(xR) . (3.14)

with λ and λ̂ real. These transformations reduce to the ones given in (2.6) when we set

U(x) ≡ eiλ(x) and Û(x) ≡ eiλ̂(x).

– 5 –



J
H
E
P
0
9
(
2
0
0
8
)
0
7
2

Expressions in components. We will now show that the above superspace action de-

scribes the BLG theory by expanding it into component fields. The Chern-Simons action

then reads

SCS = K

∫

d3x tr

[

2ǫµνλ

(

Aµ∂νAλ +
2i

3
AµAνAλ

)

− 2ǫµνλ

(

Âµ∂νÂλ +
2i

3
ÂµÂνÂλ

)

+ 2iχ̄χ− 2i ˆ̄χχ̂− 4Dσ + 4D̂σ̂

]

(3.15)

and the matter action becomes

Smat =

∫

d3x tr
[

−(DµZ)†DµZ − iζ† /Dζ + F †F + Z†
DZ − Z†ZD̂

+ iZ†χζ + iζ†χ̄Z − iZ†ζχ̂− iζ†Z ˆ̄χ

− Z†σ2Z − Z†Zσ̂2 + 2Z†σZσ̂ − iζ†σζ + iζ†ζσ̂
]

. (3.16)

The gauge covariant derivative is defined in (2.2). Let us remind that our notation sup-

presses indices in “standard positions”,3 e.g.

trZ†χζ ≡ trZ†
Aχ

αζA
α ≡ (Z†

A)âb(χ
α)bc(ζ

A
α )câ . (3.17)

The superpotential contains the following interactions of the component fields

Spot = − L

12

∫

d3x tr
[

ǫABCD

(

ζAζ‡BZCZ‡D − ζ‡AζBZ‡CZD + ζAZ‡BζCZ‡D
)

+ǫABCD
(

ζ̄‡Aζ̄BZ̄
‡
CZ̄D − ζ̄Aζ̄

‡
BZ̄CZ̄

‡
D + ζ̄‡AZ̄B ζ̄

‡
CZ̄D

)

+2ǫABCDF
AZ‡BZCZ‡D − 2ǫABCDF̄ ‡

AZ̄BZ̄
‡
CZ̄D

]

. (3.18)

Integrating out auxiliary fields. The fields D and D̂ are Lagrange multipliers for the

constraints

σn =
1

4K
tr tnZZ† , σ̂n =

1

4K
tr tnZ†Z , (3.19)

where tn are the generators of SU(2) normalized as described in appendix A. The equations

of motion for the χ’s are

χn = − 1

2K
tr tnZζ† , χ̄n = − 1

2K
tr tnζZ† , (3.20)

χ̂n = − 1

2K
tr tnζ†Z , ˆ̄χn = − 1

2K
tr tnZ†ζ , (3.21)

and the ones for F are

FA = −L
6
ǫABCDZ̄BZ̄

‡
CZ̄D , F †

A = +
L

6
ǫABCDZ

‡BZCZ‡D . (3.22)

3The standard position of an index is defined when the field is introduced and those for spinor indices

are explained in appendix A.
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Using these relations one finds the following action

S =

∫

d3x

[

2Kǫµνλ tr

(

Aµ∂νAλ +
2i

3
AµAνAλ − Âµ∂νÂλ − 2i

3 ÂµÂνÂλ

)

− tr(DµZ)†DµZ − i tr ζ† /Dζ − Vferm − Vbos

]

. (3.23)

The quartic terms Vferm are interactions between fermions and bosons, and the sextic terms

Vbos are interactions between bosons only. Separated according to their origin we have

V ferm
D =

i

4K
tr

[

ζAζ†AZ
BZ†

B − ζ†Aζ
AZ†

BZ
B + 2ζAZ†

AZ
Bζ†B − 2Z†

Aζ
Aζ†BZ

B
]

, (3.24)

V ferm
F =

L

12
ǫABCD tr

[

ζAζ‡BZCZ‡D − ζ‡AζBZ‡CZD + ζAZ‡BζCZ‡D
]

+
L

12
ǫABCD tr

[

ζ̄‡Aζ̄BZ̄
‡
CZ̄D − ζ̄Aζ̄

‡
BZ̄CZ̄

‡
D + ζ̄‡AZ̄B ζ̄

‡
CZ̄D

]

(3.25)

and

V bos
D =

1

16K2
tr

[

ZAZ†
AZ

BZ†
BZ

CZ†
C + Z†

AZ
AZ†

BZ
BZ†

CZ
C − 2Z†

AZ
BZ†

BZ
AZ†

CZ
C
]

, (3.26)

V bos
F = −L

2

36
ǫABCGǫ

DEFG trZ‡AZBZ‡CZ̄DZ̄
‡
EZ̄F . (3.27)

When substituting in (3.4) we find that for K = 1
L all sextic interactions can be joined

together to

V bos =
L2

6
trX [IX†JXK]X†[KXJX†I] . (3.28)

Furthermore setting L = 4f , this is precisely the scalar potential of the BLG theory (2.1).

With this choice also the other coefficients match exactly.

4. ABJM U(N)2 gauge theory in superspace

As remarked in section 2, it is not obvious how to generalize van Raamsdonk’s formulation

of the BLG theory to higher rank gauge groups. This difficulty is also evident in our super-

space formulation, since the manifestly SU(4) invariant superpotential is gauge invariant

only for SU(2)×SU(2) gauge theory. A way forward is the recently proposed generalization

due to ABJM [10].

Their key idea for the generalization is to give up the manifest global SU(4) invariance

by forming the following complex combinations of the bifundamental fields:

Z1 = X1 + iX5 , W1 = X3† + iX7† , (4.1)

Z2 = X2 + iX6 , W2 = X4† + iX8† . (4.2)

Promoting these fields to chiral superfields, the superpotential of the BLG theory (3.11)

may be written as [10]

Spot = L

∫

d3x d2θW(Z,W) + L

∫

d3x d2θ̄ W̄(Z̄, W̄) (4.3)

– 7 –
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with

W =
1

4
ǫACǫ

BD trZAWBZCWD , W̄ =
1

4
ǫACǫBD tr Z̄AW̄BZ̄CW̄D . (4.4)

This form of the superpotential is exactly the same as for the theory on D3-branes on the

conifold [15] and it generalizes readily to SU(N)×SU(N) gauge group. This superpotential

has a global symmetry SU(2) × SU(2) and also a “baryonic” U(1) symmetry

ZA → eiαZA , WB → e−iαWB . (4.5)

In the 3+1 dimensional case this symmetry is originally gauged, but far in the IR it becomes

global [15]. However, in the present 2 + 1 dimensional example this does not happen, so

it is natural to add it to the gauge symmetry [10]. Including also the trivial neutral U(1),

we thus find the U(N) × U(N) Chern-Simons gauge theory at level k. The gauging of

the symmetry (4.5) seems important for obtaining the correct M-theory interpretation for

arbitrary k and N [10]. Since this symmetry corresponds to simultaneous rotation of the 4

complex coordinates of C4 transverse to the M2-branes, this space actually turns into an

orbifold C4/Zk [10]. Because of this gauging, even for N = 2 the ABJM theory is slightly

different from the BLG theory.

Let us summarize the properties of the ABJM theory [10] and explicitly prove that

its U(1)R × SU(2) × SU(2) global symmetry becomes enhanced to SU(4)R. The fields Z
and W transform in the (2,1) and the (1, 2̄) of the global SU(2)2 and in the (N, N̄) and

the (N̄,N) of the gauge group U(N)2, respectively. We use the following conventions for

SU(2)2 indices: ZA, Z̄A, WA, W̄A and for U(N)2 indices: Za
â, Z̄ â

a, W â
a, W̄a

â. The

gauge superfields have indices Va
b and V̂ â

b̂. The component fields for Z, Z̄ and V are as

previously in (3.2), (3.3) and (3.1). The components of W and W̄ will be denoted by

W = W (xL) +
√

2θω(xL) + θ2G(xL) , (4.6)

W̄ = W †(xR) −
√

2θ̄ω†(xR) − θ̄2G†(xR) . (4.7)

The Chern-Simons action is formally unaltered (3.8), the matter part (3.9) splits into

Smat =

∫

d3x d4θ tr
[

−Z̄Ae
−VZAeV̂ − W̄Ae−V̂WAe

V
]

, (4.8)

and the superpotential is given by (4.3). The symmetry enhancement to SU(4)R requires

the normalization constants in (3.8) and (4.3) to be related as K = 1
L .

Expressions in components. The component form of the Chern-Simons action has

been computed in (3.15) and the matter action involving Z looks identical to (3.16) where

now Z, ζ, F have only two components. The matter action for W is analogously given by

SW
mat =

∫

d3x tr
[

−(DµW )†DµW − iω† /Dω +G†G+W †
D̂W −W †WD

+iW †χ̂ω + iω† ˆ̄χW − iW †ωχ− iω†Wχ̄

−W †σ̂2W −W †Wσ2 + 2W †σ̂Wσ − iω†σ̂ω + iω†ωσ
]

, (4.9)

– 8 –
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where DµW = ∂µW + iÂµW − iWAµ. The superpotential expands to

Spot =
L

4

∫

d3x tr
[

ǫACǫ
BD

(

2FAWBZ
CWD + 2ZAWBZ

CGD (4.10)

−2ζAWBZ
CωD−2ζAωBZ

CWD−ZAωBZ
CωD−ζAWBζ

CWD

)

−ǫACǫBD

(

2F †
AW

†BZ†
CW

†D + 2Z†
AW

†BZ†
CG

†D

+2ζ†AW
†BZ†

Cω
†D+2ζ†Aω

†BZ†
CW

†D+Z†
Aω

†BZ†
Cω

†D+ζ†AW
†Bζ†CW

†D
)]

.

Integrating out auxiliary fields. The auxiliary fields can be replaced by means of the

following equations:

σn =
1

4K
trT n

(

ZZ† −W †W
)

, σ̂n =
1

4K
trT n

(

Z†Z −WW †
)

, (4.11)

χn = − 1

2K
trT n

(

Zζ† − ω†W
)

, χ̄n = − 1

2K
tr T n

(

ζZ† −W †ω
)

, (4.12)

χ̂n = − 1

2K
trT n

(

ζ†Z −Wω†
)

, ˆ̄χn = − 1

2K
tr T n

(

Z†ζ − ωW †
)

, (4.13)

FA = +
L

2
ǫACǫBDW

†BZ†
CW

†D , GA = −L
2
ǫACǫ

BDZ†
BW

†CZ†
D , (4.14)

F †
A = −L

2
ǫACǫ

BDWBZ
CWD , G†A = +

L

2
ǫACǫBDZ

BWCZ
D . (4.15)

Then the total action reads

S =

∫

d3x
[

2Kǫµνλ tr
(

Aµ∂νAλ + 2i
3 AµAνAλ − Âµ∂νÂλ − 2i

3 ÂµÂνÂλ

)

− tr(DµZ)†DµZ − tr(DµW )†DµW − i tr ζ† /Dζ − i trω† /Dω
− Vferm − Vbos

]

(4.16)

with the potentials

V ferm
D =

i

4K
tr

[

(

ζAζ†A−ω†AωA

)(

ZBZ†
B−W †BWB

)

−
(

ζ†Aζ
A−ωAω

†A
)(

Z†
BZ

B−WBW
†B

)

]

+
i

2K
tr
[

(

ζAZ†
A−W †AωA

)(

ZBζ†B−ω†BWB

)

−
(

Z†
Aζ

A−ωAW
†A

)(

ζ†BZ
B−WBω

†B
)

]

,

V ferm
F =

L

4
ǫACǫ

BD tr
[

2ζAWBZ
CωD + 2ζAωBZ

CWD + ZAωBZ
CωD + ζAWBζ

CWD

]

+
L

4
ǫACǫBD tr

[

2ζ†AW
†BZ†

Cω
†D+2ζ†Aω

†BZ†
CW

†D+Z†
Aω

†BZ†
Cω

†D+ζ†AW
†Bζ†CW

†D
]

and

V bos
D =

1

16K2
tr

[

(

ZAZ†
A +W †AWA

)(

ZBZ†
B −W †BWB

)(

ZCZ†
C −W †CWC

)

+
(

Z†
AZ

A +WAW
†A

)(

Z†
BZ

B −WBW
†B

)(

Z†
CZ

C −WCW
†C

)

− 2Z†
A

(

ZBZ†
B −W †BWB

)

ZA
(

Z†
CZ

C −WCW
†C

)

− 2W †A
(

Z†
BZ

B −WBW
†B

)

WA

(

ZCZ†
C −W †CWC

)

]

,
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V bos
F = −L

2

4
tr

[

W †AZ†
BW

†CWAZ
BWC −W †AZ†

BW
†CWCZ

BWA

+ Z†
AW

†BZ†
CZ

AWBZ
C − Z†

AW
†BZ†

CZ
CWBZ

A
]

.

Let us note that V bos
F and V bos

D are separately non-negative.4 Indeed, the F-term

contribution is related to the superpotential W through

V bos
F =

∣

∣

∣

∣

∂W

∂ZA

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂W

∂WA

∣

∣

∣

∣

2

= tr
[

F †
AF

A +G†AGA

]

, (4.17)

with FA and GA from (4.14), (4.15). The D-term contribution may be written as

V bos
D = tr

[

N †
AN

A +M †AMA

]

, (4.18)

where NA = σZA − ZAσ̂ and MA = σ̂WA − WAσ. Thus, the total bosonic potential

vanishes if and only if

FA = GA = NA = MA = 0 . (4.19)

SU(4) invariance. If the coefficients of the Chern-Simons action and the superpotential

are related by K = 1
L , then the R-symmetry of the theory is enhanced to SU(4).5 In order

to make this symmetry manifest we combine the SU(2) fields Z and W into a fundamental

and anti-fundamental representation of SU(4) as

Y A = {ZA,W †A} , Y †
A = {Z†

A,WA} , (4.20)

where the index A on the left hand side now runs from 1 to 4. Then the potential can be

written as [10]

V bos = −L
2

48
tr

[

Y AY †
AY

BY †
BY

CY †
C + Y †

AY
AY †

BY
BY †

CY
C

+ 4Y AY †
BY

CY †
AY

BY †
C − 6Y AY †

BY
BY †

AY
CY †

C

]

. (4.21)

The fermions have to be combined as follows

ψA = {ǫABζ
B e−iπ/4,−ǫABω

†B eiπ/4} , ψA† = {−ǫABζ†B e
iπ/4, ǫABωB e

−iπ/4} , (4.22)

and we can write fermionic interactions in the manifestly SU(4) invariant way:

V ferm =
iL

4
tr

[

Y †
AY

AψB†ψB − Y AY †
AψBψ

B† + 2Y AY †
BψAψ

B† − 2Y †
AY

BψA†ψB

− ǫABCDY †
AψBY

†
CψD + ǫABCDY

AψB†Y CψD†
]

. (4.23)

Thus, the U(1)R × SU(2)× SU(2) global symmetry is enhanced to SU(4)R symmetry, with

the U(1)R corresponding to the generator 1
2 diag(1, 1,−1,−1). This shows that the theory

in general possesses N = 6 supersymmetry.

4We thank John Schwarz for useful discussions on this issue.
5This SU(4)R symmetry should not be confused with the global SU(4) of the BLG theory. The latter is

not manifest in the ABJM theory, but should nevertheless be present for k = 1 and k = 2 [10].
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In [10] it was proposed that this U(N)×U(N) Chern-Simons theory at level k describes

the world volume of N coincident M2-branes placed at the Zk orbifold of C4 where the

action on the 4 complex coordinates6 is yA → e2πi/kyA. This action preserves the SU(4)

symmetry that rotates them, which in the gauge theory is realized as the R-symmetry. The

N = 6 supersymmetry of this orbifold can be checked as follows. The generator of Zk acts

on the spinors of SO(8) as

Ψ → e2πi(s1+s2+s3+s4)/kΨ , (4.24)

where si = ±1/2 are the spinor weights. The chirality projection implies that the sum of

all si must be even, producing an 8-dimensional representation. The spinors that are left

invariant by the orbifold have
∑4

i=1 si = 0 (mod k). This selects 6 out of the 8 spinors;

therefore, the theory on M2-branes has 12 supercharges in perfect agreement with the

Chern-Simons gauge theory with general level k.7 This is one of the reasons why the

theory reviewed in this section was conjectured to be dual to M-theory on AdS4 × S7/Zk

with N units of flux [10].

5. Non-chiral orbifold gauge theories

The results reviewed in the previous sections clearly represent major progress in under-

standing AdS4/CFT3 duality. In this section we make the first steps towards generalizing

them. We will consider a further Zn projection of the basic SU(4)-invariant Zk orbifold

reviewed in section 4.8 The Zn action is

y1 → e2πi/ny1 , y2 → y2 , y3 → e2πi/ny3 , y4 → y4 . (5.1)

This rotates the spinors of SO(8) by the phase e2πi(s1+s3)/n. Thus, the spinors left invariant

by the combined Zk and Zn actions have s1 + s3 = s2 + s4 = 0. There are 4 such spinors

corresponding to N = 4 supersymmetry. The orbifold action preserves SU(2) × SU(2)

global symmetry, which is the R-symmetry in N = 4 supersymmetric Chern-Simons gauge

theories.

To construct the gauge theory, which turns out to be a non-abelian generalization of

the N = 4 supersymmetric quiver gauge theory found in section 3.2 of [14], we apply the

well-known orbifold projection technique introduced in [27]. The starting point is the gauge

theory from section 4 for gauge group U(nN) × U(nN). We rename the fields as Z → Z,

W → W, V → V and V̂ → V̂ in order to have the original variables available for the fields

after the orbifold projection. The Zn orbifold action is given by

Z1 → e2πi/nΩZ1Ω† , W1 → e−2πi/nΩW1Ω
† , V → ΩVΩ† , (5.2)

Z2 → ΩZ2Ω† , W2 → ΩW2Ω
† , V̂ → ΩV̂Ω† ,

6Let us note that these coordinates are not the same as the complex coordinates zA natural for the

superspace formulation of BLG theory in section 3. They are related through y1 = z1, y2 = z2, y3 =

z̄3, y4 = z̄4.
7For k = 1 and k = 2 there is further enhancement to N = 8 supersymmetry, which is subtle in the

gauge theory [10].
8A Z2 orbifold of the BLG theory was also studied in [26]. This orbifold is contained in our construction

as a special case.
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Z1 Z2 Z3Z2n

W1 W2 W3W2n
N N̄ N N̄N̄

U1 U2 U3 U4U2n

Figure 1: Non-chiral quiver. The fields Zℓ transform in (N, N̄) representations and the fields Wℓ

in (N̄,N) ones. The arrows indicate under which of the Uℓ(N) the fields transform. For instance

Z2 transforms under (U3(N),U2(N)). We close the chain by identifying U2n+1(N) ≡ U1(N).

where Ω = diag(1N×N , e
2πi/n1N×N , . . . , e

2πi(n−1)/n1N×N ). In the orbifold theory only

those components of the superfields are retained which are invariant under (5.2). Explicitly

these components are

Z1 =

















0 Z1

0 Z3

0
. . .

0 Z2n−3

Z2n−1 0

















, Z2 = diag(Z2n,Z2, . . . ,Z2n−2) , (5.3)

W1 =

















0 W2n−1

W1 0

W3 0
. . . 0

W2n−3 0

















, W2 = diag(W2n,W2, . . . ,W2n−2) , (5.4)

and

V = diag(V1,V3, . . . ,V2n−1) , V̂ = diag(V2n,V2, . . . ,V2n−2) . (5.5)

The projection has broken the U(nN)×U(nN) gauge symmetry down to the U1(N)⊗ . . .⊗
U2n(N) and the new field content is given by Vℓ, Zℓ, Wℓ, Z̄ℓ and W̄ℓ for ℓ = 1, . . . 2n. These

matter fields transform under bifundamental representations of various pairs of U(N)’s.

Our labeling is such that the rows of Z correspond to the gauge groups U1,U3, . . . ,U2n−1

and the columns to U2n,U2,U4, . . . ,U2n−2. For W rows and columns are interchanged.

These transformations properties are depicted and further described in the quiver diagram

in figure 1.

The action of the orbifold theory is given by the following Chern-Simons and matter

parts,

SCS = iK

∫

d3x d4θ

∫ 1

0
dt

2n
∑

ℓ=1

(−1)ℓ trVℓD̄
α
(

etVℓDαe
−tVℓ

)

, (5.6)

Smat =

∫

d3x d4θ
n

∑

ℓ=1

tr
[

−Z̄2ℓ−1e
−V2ℓ−1Z2ℓ−1e

V2ℓ − W̄2ℓ−1e
−V2ℓW2ℓ−1e

V2ℓ−1

−Z̄2ℓe
−V2ℓ+1Z2ℓe

V2ℓ − W̄2ℓe
−V2ℓW2ℓe

V2ℓ+1

]

(5.7)
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and the superpotential

W =

n
∑

ℓ=1

1

2
tr

[

Z2ℓ−1W2ℓZ2ℓW2ℓ−1 −Z2ℓW2ℓZ2ℓ+1W2ℓ+1

]

(5.8)

W̄ =

n
∑

ℓ=1

1

2
tr

[

Z̄2ℓW̄2ℓ+1Z̄2ℓ+1W̄2ℓ − Z̄2ℓ−1W̄2ℓ−1Z̄2ℓW̄2ℓ

]

. (5.9)

The terms in this superpotential correspond to all closed loops that follow four arrows and

connect three sites in the quiver diagram in figure 1. For n = 1 we get back the original

ABJM theory [10] of section 4.

We note that the orbifold projection has partially broken the SU(4) R-symmetry of

the n = 1 model. Since the fields do not carry any further index besides the gauge indices

and the label ℓ, only a U(1)R symmetry is manifest. However, similarly to the previous

cases, we observe an R-symmetry enhancement to SU(2)o × SU(2)e which indicates that

the theory possesses N = 4 supersymmetry.9 The SU(2)o×SU(2)e symmetry can be made

manifest in the potential by introducing doublets

Y A
ℓ = {Zℓ,W

†
ℓ } , Y †

A,ℓ = {Z†
ℓ ,Wℓ} , (5.10)

for each link ℓ. Then the SU(2)o factor rotates the fields on the odd links, and the SU(2)e
factor those on the even links. In order to illustrate this statement, we write down the

bosonic potential:

V bos = −L
2

48

n
∑

ℓ=1

[

trY A
2ℓ Y †

A,2ℓ Y B
2ℓ Y †

B,2ℓ Y C
2ℓ Y †

C,2ℓ

+ 3 tr Y A
2ℓ Y †

A,2ℓ Y B
2ℓ Y †

B,2ℓ Y C
2ℓ+1Y

†
C,2ℓ+1

+ 3 tr Y A
2ℓ Y †

A,2ℓ Y B
2ℓ+1Y

†
B,2ℓ+1Y

C
2ℓ+1Y

†
C,2ℓ+1

+ trY A
2ℓ+1Y

†
A,2ℓ+1Y

B
2ℓ+1Y

†
B,2ℓ+1Y

C
2ℓ+1Y

†
C,2ℓ+1

+ trY †
A,2ℓ−1Y

A
2ℓ−1Y

†
B,2ℓ−1Y

B
2ℓ−1Y

†
C,2ℓ−1Y

C
2ℓ−1

+ 3 tr Y †
A,2ℓ−1Y

A
2ℓ−1Y

†
B,2ℓ−1Y

B
2ℓ−1Y

†
C,2ℓ Y C

2ℓ

+ 3 tr Y †
A,2ℓ−1Y

A
2ℓ−1Y

†
B,2ℓ Y B

2ℓ Y †
C,2ℓ Y C

2ℓ

+ trY †
A,2ℓ Y A

2ℓ Y †
B,2ℓ Y B

2ℓ Y †
C,2ℓ Y C

2ℓ

+ 4 tr Y A
2ℓ−1Y

†
B,2ℓ−1Y

C
2ℓ−1Y

†
A,2ℓ−1Y

B
2ℓ−1Y

†
C,2ℓ−1

+ 12 tr Y A
2ℓ Y †

B,2ℓ Y C
2ℓ+1Y

†
A,2ℓ+2Y

B
2ℓ+2Y

†
C,2ℓ+1

+ 12 tr Y A
2ℓ+1Y

†
B,2ℓ+1Y

C
2ℓ Y †

A,2ℓ−1Y
B
2ℓ−1Y

†
C,2ℓ

+ 4 tr Y A
2ℓ Y †

B,2ℓ Y C
2ℓ Y †

A,2ℓ Y B
2ℓ Y †

C,2ℓ

(5.11)

9This agrees with the conclusion reached in section 3.2 of [14] about the abelian, N = 1, version of this

gauge theory.
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− 6 trY A
2ℓ−1Y

†
B,2ℓ−1Y

B
2ℓ−1Y

†
A,2ℓ−1Y

C
2ℓ−1Y

†
C,2ℓ−1

− 6 trY A
2ℓ Y †

B,2ℓ Y B
2ℓ Y †

A,2ℓ Y C
2ℓ Y †

C,2ℓ

− 6 trY A
2ℓ+1Y

†
B,2ℓ+1Y

B
2ℓ+1Y

†
A,2ℓ+1Y

C
2ℓ Y †

C,2ℓ

− 6 trY A
2ℓ Y †

B,2ℓ Y B
2ℓ Y †

A,2ℓ Y C
2ℓ+1Y

†
C,2ℓ+1

− 6 trY A
2ℓ−1Y

†
B,2ℓ Y B

2ℓ Y †
A,2ℓ−1Y

C
2ℓ−1Y

†
C,2ℓ−1

− 6 trY A
2ℓ Y †

B,2ℓ−1Y
B
2ℓ−1Y

†
A,2ℓ Y C

2ℓ Y †
C,2ℓ

− 6 trY A
2ℓ+1Y

†
B,2ℓ+2Y

B
2ℓ+2Y

†
A,2ℓ+1Y

C
2ℓ Y †

C,2ℓ

− 6 trY A
2ℓ Y †

B,2ℓ−1Y
B
2ℓ−1Y

†
A,2ℓ Y C

2ℓ+1Y
†
C,2ℓ+1

]

.

As a matter of fact, this potential is almost SU(2)2n invariant. Only the two terms with

factor 12 break this symmetry to SU(2)o × SU(2)e.

Note added. After the original version of this paper appeared, two papers [28, 29]

analyzed the moduli space of this non-chiral U(N)2n quiver gauge theory for N = 1.

These papers demonstrate that one of the U(1) gauge symmetries, which corresponds to

the combination of the gauge potentials
∑2n

ℓ=1(−1)ℓAℓ, is broken to a discrete subgroup.

Assuming their choice of quantization condition is correct, this implies that for the non-

chiral quiver chain the moduli space is C4/(Zn × Zkn), i.e. k̃ = kn. It is thus natural to

conjecture that the gauge theory describes N coincident M2-branes on this orbifold.

6. Chiral orbifold gauge theories

In this section we consider a different orbifold projection of the non-chiral ABJM theory,

which produces a gauge theory whose matter fields do not form pairs in mutually conjugate

representations. The Zl action is now given by

y1 → e2πi/ly1 , y2 → e−2πi/ly2 , y3 → y3 , y4 → y4 . (6.1)

This rotates the spinors of SO(8) by the phase e2πi(s1−s2)/l. Thus, the spinors left invariant

by the combined Zk and Zl actions have 2s1 + s3 + s4 = 0. There are 2 such spinors

corresponding to N = 2 supersymmetry. The orbifold action also preserves SU(2) global

symmetry which commutes with the U(1)R symmetry (in the special case l = 2 this global

symmetry is actually enhanced to SU(2) × SU(2)).

On the gauge theory side, we start with the U(lN) × U(lN) gauge theory with fields

Z, W, V, V̂, and retain the superfields invariant under the Zl action

Z1 → e2πi/lΩZ1Ω† W1 → ΩW1Ω
† , V → ΩVΩ† , (6.2)

Z2 → e−2πi/lΩZ2Ω† , W2 → ΩW2Ω
† , V̂ → ΩV̂Ω† , (6.3)

where Ω = diag(1N×N , e
2πi/l1N×N , . . . , e2πi(l−1)/l1N×N ). This projection breaks the

U(lN) × U(lN) gauge symmetry down to the (U(N) × U(N))l, and the resulting chiral

field content is summarized in the quiver diagram in figure 2. The global SU(2) symmetry

acts on the pairs of fields having parallel arrows. Now there is no possibility of a non-trivial
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Z1

Z2

Z3

Z4

W1

W2

W3

W4

W5

W2l

N N̄ N N̄ NN̄

U1 U2 U3 U4 U5U2l

Figure 2: Chiral quiver. The characteristic property of the chiral quiver is that no nodes are

connected by chiral fields with mutually conjugate representation (no anti-parallel arrows).

symmetry restoration since on each link there are no pairs of chiral superfields in mutually

conjugate representations of the gauge group. Thus, there is no extended supersymmetry,

and we are dealing with an N = 2 gauge theory that just happens to possess additional

global SU(2) symmetry. The symmetries match those of a Zl×Zk̃ orbifold where the SU(2)

symmetry corresponds to rotations of y3 and y4.

The chiral Z2 projection corresponding to l = 2 was originally considered in 3 + 1

dimensions to construct the theory on D3-branes at the tip of the cone over T 11/Z2 where

the Z2 acts freely [30]. In this case the orbifold projection does not break the SU(2)×SU(2)

symmetry of the quartic superpotential. For the generalization to l > 2 in the context of

conifold theory, which preserves only one global SU(2), see for example [31].

7. N = 2 superconformal theory with SU(3) symmetry and RG flow

Let us consider the U(N)×U(N) gauge theories in the special cases k = 1 or k = 2, where

they are expected to possess a global SU(4) non-R symmetry. We can then add a relevant

superpotential deformation that breaks it to SU(3), and this RG flow could take the theory

to a new N = 2 superconformal theory with SU(3) symmetry. An analogous construction

in the 3+1 dimensional N = 4 SYM theory is to add a quadratic term in one of the

superfields, which creates an RG flow leading to a U(1)R ×SU(2) invariant superconformal

theory with a quartic superpotential [32]. Ideas similar to this were explored also in the

2 + 1 dimensional case [23] where a quadratic term breaks the SU(4) global symmetry to

SU(3); we will make them more concrete here.

A subtlety of the ABJM theories with N > 2 is that only the SU(2)× SU(2) subgroup

of the global SU(4)R is manifest in the superpotential [10]. We will thus consider the

N = 2 case, closely related to the BLG theory, where a global SU(4) is manifest in the

superpotential (3.12). A simple quadratic deformation that preserves the gauge symmetry

and an SU(3) gives the superpotential

W = − 1

8 · 4! ǫABCDǫ
abcdZA

a ZB
b ZC

c ZD
d +m(Z4

a)2 . (7.1)

This relevant deformation causes RG flow that takes the theory to an N = 2 superconformal

theory whose effective superpotential is found by integrating out Z4
a :

Weff ∼ (ǫABCǫ
abcdZA

a ZB
b ZC

c )2 . (7.2)
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This sextic superpotential is marginal if we assign R-charge 1/3 to the remaining superfields

ZA
a , A = 1, 2, 3. Since θ has R-charge 1, the fermionic superpartner has R-charge −2/3.

This means that the exact scaling dimension of the bosonic fields ZA
a is 1/3, and of their

fermionic superpartners is 5/6. In addition to the U(1)R symmetry, the superpotential is

invariant under a global SU(3) symmetry that acts on the index A.

Thus, we have found N = 2 superconformal Chern-Simons theories with global SU(3)

symmetry, and we need to search for their M-theory duals. Remarkably, N. Warner [20]

has found an AdS4 extremum of the N = 8 gauged supergravity [33] with exactly the same

symmetries as our gauge theory; namely, U(1)R × SU(3). Its uplifting to 11 dimensions

produces a warped product of AdS4 and a “stretched and squashed” 7-sphere [22, 24], which

contains a CP 2 giving rise to the SU(3) symmetry. We can plausibly conjecture that the

U(2) × U(2) Chern-Simons gauge theory with level k = 1 and the sextic superpotential

Weff is dual to such a background supported by two units of G4 flux (but the supergravity

approximation applies only in the limit of large flux). The theory at level k = 2 is then

dual to a Z2 orbifold of the background in [22, 24].

In fact, the full holographic RG flow from the SO(8)R symmetric AdS4 extremum in

the UV to the U(1)R×SU(3) symmetric AdS4 extremum in the IR was constructed in [21],

and its uplifting to 11 dimensions in [22]. It was shown that the relevant operator giving

rise to the RG flow in the dual gauge theory has dimension 2 [21]. This precisely agrees

with the dimension of the fermion bilinear we have added to the potential. Further studies

of the holographic RG flow [23] showed that in the IR theory there are chiral superfields of

R-charge 1/3, consistent with our claim. We may therefore conjecture that this RG flow

is encoded in the superpotential (7.1).

In order to check the AdS4/CFT3 correspondence we are proposing, we should match

the R-charges and dimensions of the gauge invariant operators. Luckily, in gauged super-

gravity the spectrum of perturbations was analyzed long ago [34], and we will use these re-

sults. Perhaps the simplest chiral operators we can write down transform in the 6 of SU(3):

Z(A
a ZB)

a (7.3)

This multiplet of operators consists of a scalar field of R-charge 2/3 and dimension 2/3; a

spin 1/2 fermion of R-charge −1/3 and dimension 7/6; and a pseudoscalar of R-charge −4/3

and dimension 5/3. In [34] the fields with such quantum numbers can be found in table 2

corresponding to a massive hypermultiplet. It is further stated that there is a sextet with

R-charge y = 2/3, which agrees with (7.3). The corresponding operator dimension is [34]

E0 = λ−1|y|, and the standard relation between dimension and R-charge in 2+1 dimensions

requires λ = 1 (this differs from the assignment λ = 1/2 made in [34]). In fact, using λ = 1

and y = ±2/3 in table 2 of [34] we match the R-charges and dimensions of the operators con-

tained in the supermultiplet (7.3), as well as in the corresponding anti-chiral supermultiplet.

Clearly, it is necessary to subject these ideas to further tests. One obvious problem is

to construct explicitly the U(1)R×SU(3) symmetric U(N)×U(N) gauge theory for N > 2,

which we conjecture to be dual to the background of [22] with N units of flux.
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8. Discussion

In this letter we made first steps towards generalizing the BLG [1 – 4] and ABJM [10]

superconformal Chern-Simons gauge theories. We wrote down the superspace formulation

for the U(N) × U(N) Chern-Simons theories with bifundamental matter and a quartic

superpotential of [15], which at level k describe N M2-branes at a Zk orbifold [10]. We also

wrote down new theories describing N M2-branes at certain singularities C4/(Zn × Zkn).

In section 5 we presented a family of non-chiral quiver gauge theories which have N = 4

supersymmetry, and in section 6 a family of chiral quiver gauge theories possessing N = 2

supersymmetry. Finally, we conjectured that k = 1 Chern-Simons gauge theories with

SU(3) invariant relevant superpotential deformation are dual to the holographic RG flows

constructed in [21, 22].

Clearly, there are many possible further generalizations of this work. It would be

desirable to understand systematically the gauge theories describing M2-branes at arbi-

trary orbifold singularities. Consider, for example, the orbifolds C4/Zk where the SU(3)

symmetric action on the 4 complex coordinates is diag(e2πi/k, e2πi/k, e2πi/k, e−6πi/k). On

spinors this translates into multiplication by e2πi(s1+s2+s3−3s4)/k, and it is easy to see that

the orbifold preserves N = 2 supersymmetry. It seems difficult, however, to write down

the dual gauge theory that has manifest global SU(3) symmetry. To see the full SU(3) one

may need to invoke the ’t Hooft operators used in [10].

It would also be interesting to study resolution of orbifolds. In the 3 + 1 dimensional

case new theories may be obtained through turning on the Fayet-Iliopoulos terms which

correspond to partial resolutions of orbifolds [30]. Perhaps a similar approach can be

undertaken also in 2 + 1 dimensions to produce theories of M2-branes at more general

conical singularities.
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A. Notation

The world-volume metric is gµν = diag(−1,+1,+1) with index range µ = 0, 1, 2. We

use Dirac matrices (γµ)α
β = (iσ2, σ1, σ3) satisfying γµγν = gµν + ǫµνργρ. The fermionic

coordinate of superspace is a complex two-component spinor θ. Indices are raised, θα =

ǫαβθβ, and lowered, θα = ǫαβθ
β, with ǫ12 = −ǫ12 = 1. Note that lowering the spinor

indices of the Dirac matrices makes them symmetric γµ
αβ = (−1,−σ3, σ1). In products like
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θαθα ≡ θ2, θαθ̄α ≡ θθ̄ etc and θαγµ
αβ θ̄

β ≡ θγµθ̄ we suppress the indices. We have

θαθβ =
1

2
ǫαβθ

2 , θαθβ =
1

2
ǫαβθ2 (A.1)

and likewise for θ̄ and derivatives. The Fierz identities are10

(ψ1ψ2)(ψ3ψ4) = −1

2
(ψ1ψ4)(ψ3ψ2) −

1

2
(ψ1γ

µψ4)(ψ3γµψ2) , (A.2)

(ψ1ψ2)(ψ3γ
µψ4) = −1

2
(ψ1γ

µψ4)(ψ3ψ2)−
1

2
(ψ1ψ4)(ψ3γ

µψ2)+
1

2
ǫµνρ(ψ1γνψ4)(ψ3γρψ2) ,

(ψ1γ
µψ2)(ψ3γ

νψ4) = −1

2
gµν(ψ1ψ4)(ψ3ψ2)+

1

2
gµν(ψ1γ

ρψ4)(ψ3γρψ2)−(ψ1γ
(µψ4)(ψ3γ

ν)ψ2)

+
1

2
ǫµνρ

[

(ψ1γρψ4)(ψ3ψ2) − (ψ1ψ4)(ψ3γρψ2)
]

,

which imply in particular

(θθ̄)2 = −1

2
θ2θ̄2 , (θθ̄)(θγν θ̄) = 0 , (θγµθ̄)(θγν θ̄) =

1

2
gµνθ2θ̄2 . (A.3)

Supercovariant derivatives and susy generators are

Dα = ∂α + i(γµθ̄)α∂µ , Qα = ∂α − i(γµθ̄)α∂µ , (A.4)

D̄α = −∂̄α − i(θγµ)α∂µ , Q̄α = −∂̄α + i(θγµ)α∂µ , (A.5)

with the only non-trivial anti-commutators

{Dα, D̄β} = −2iγµ
αβ∂µ , {Qα, Q̄β} = 2iγµ

αβ∂µ . (A.6)

We use the following conventions for integration

d2θ ≡ −1

4
dθαdθα , d2θ̄ ≡ −1

4
dθ̄αdθ̄α , d4θ ≡ d2θ d2θ̄ , (A.7)

such that
∫

d2θ θ2 = 1 ,

∫

d2θ̄ θ̄2 = 1 ,

∫

d4θ θ2θ̄2 = 1 . (A.8)

It is useful to note that up to a total derivative

∫

d4θ . . . =
1

16

(

D2D̄2 . . .
)

|θ=θ̄=0 . (A.9)

The components of a chiral and an anti-chiral superfield, Z(xL, θ) and Z̄(xR, θ̄), are a

complex boson φ, a complex two-component fermion ψ and a complex auxiliary scalar F .

Their component expansions are given by

Z = φ(xL) +
√

2 θψ(xL) + θ2 F (xL) , Z̄ = φ̄(xR) −
√

2 θ̄ψ̄(xR) − θ̄2 F̄ (xR) (A.10)

10Here and everywhere we use symmetrization and anti-symmetrization with weight one X[aYb] =
1
2

`

XaYb − XbYa

´

, X(aYb) = 1
2

`

XaYb + XbYa

´

.
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where

xµ
L = xµ + iθγµθ̄ , xµ

R = xµ − iθγµθ̄ . (A.11)

The components of the gauge superfield V(x, θ, θ̄) in Wess-Zumino gauge are the gauge

field Aµ, a complex two-component fermion χα, a real scalar σ and an auxiliary scalar D,

such that

V = 2i θθ̄ σ(x) + 2 θγµθ̄ Aµ(x) +
√

2i θ2 θ̄χ̄(x) −
√

2i θ̄2 θχ(x) + θ2 θ̄2
D(x) . (A.12)

We use the N × N hermitian matrix generators T n (n = 0, . . . , N2 − 1) and tn

(n = 1, . . . , N2 − 1) for U(N) and SU(N) respectively. We have T n = (T 0, tn) with

T 0 = 1/√N . The generators are normalized as trT nTm = δnm. Completeness implies

trAT n trBT n = trAB, trAT nBT n = trA trB for U(N) and trAtn trBtn = trAB −
1
N trA trB, trAtnBtn = trA trB − 1

N trAB for SU(N).
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